Microbial Degradation of Petroleum Hydrocarbons and Factors Influencing the Degradation Process
Supriya Jadhav,
Sameer Sharma,
Sibi G
Issue:
Volume 3, Issue 2, December 2019
Pages:
6-11
Received:
10 December 2019
Accepted:
20 December 2019
Published:
26 December 2019
Abstract: Hydrocarbon compounds have been noted to reside the family of neurotoxic and xenobiotic organic pollutants and nowadays petroleum hydrocarbon compounds continually being a major natural worry because of the development of petroleum oil extraction and related products which have major ecological issue. Oil seepage normally happen by mishaps pumping, transportation and refining and petroleum products consist of carcinogenic and mutagenic compounds which could have several consequences on biotic and abiotic factors of the ecosystem. Mainly two methods such as mechanical and chemical methods are normally used to remove hydrocarbons from contaminated places have effectiveness and can be expensive. Bioremediation is the best and advance technology for the treatment of these contaminated places because it is not much expensive and will lead to whole mineralization. Microbial degradation is the major and ultimate natural mechanism by which one can clean up the petroleum hydrocarbon pollutants from the environment. Many indigenous micro-organisms in water and soil are able to degrading hydrocarbon contaminants. A number of limiting factors have been recognized to affect the biodegradation of petroleum hydrocarbons. This review summarizes the microbial degradation of petroleum hydrocarbons aerobically and anaerobically and various factors that influencing the process. It may be concluded that microbial degradation can be considered as a key component in the cleanup strategy for petroleum hydrocarbon remediation.
Abstract: Hydrocarbon compounds have been noted to reside the family of neurotoxic and xenobiotic organic pollutants and nowadays petroleum hydrocarbon compounds continually being a major natural worry because of the development of petroleum oil extraction and related products which have major ecological issue. Oil seepage normally happen by mishaps pumping,...
Show More
Physicochemical Profiling of Different Released and Improved Desert and Cooking Banana Varieties
Mulate Zerihun,
Masresha Minuye
Issue:
Volume 3, Issue 2, December 2019
Pages:
12-21
Received:
7 December 2019
Accepted:
31 December 2019
Published:
8 January 2020
Abstract: Banana (Musa spp.) is an important ingredient of several dishes and its nutritional and other biochemical composition of released and improved desert and cooking types are yet to be scientifically studied fully. In the present study, the most popularly cultivated species of cooking and desert type banana in Ethiopia selected. The objective of this study was to determine their physicochemical profiling and nutritional quality of desert and cooking banana varieties. The chemical composition and some physicochemical characteristics of the fresh fruit and flour obtained from seventeen different banana varieties are presented. A randomized complete design with three replications was used. Length, Width, Peel and pulp thickness, Pulp to peel ratio, total soluble solids, pH, titratable acidity, ash and moisture of desert banana (Fresh) and mineral contents are the most important parameters to evaluate the quality of banana including potassium. The different varieties affected the fruit physical characteristics significantly (P≤0.05). The Cardaba varieties fruit was found to be the heaviest and the longest. The Kitawira and Nijiru varieties had the smallest, shortest and thinnest fruit. The Cardaba, Nijiru, Matoke, and Kitawira contained more pulp weight than peel weight. Most fruit chemical quality parameters were significantly (P≤0.05) affected by the varieties. The chemical composition of the flour also varied according to the variety and types of banana. Among others, the Cardaba variety was found to have high fruit weight, juice volume, total soluble solids, dry matter, and low total titratable acidity. Banana flour is rich in potassium varied from 246.288 to 375.949 mg/100g according to the variety. The range obtained were 41.200 – 89.132 mg/100g phosphorus, 0.705 – 19.352 mg/100g sodium, 2.497 – 3.359% ash, and 71.529- 76. 564% moisture. The sensory analysis of desert banana type was evaluated. Thus, there was no significant difference between varieties at P≤0.05 and sensorial acceptability in most varieties. The current study revealed the variations of biochemical compositions of desert and cooking banana varieties. This will be useful for the exploitation of these crops to obtain and formulate the value-added products. These varieties are recommended for different food product development by food processors in Ethiopia.
Abstract: Banana (Musa spp.) is an important ingredient of several dishes and its nutritional and other biochemical composition of released and improved desert and cooking types are yet to be scientifically studied fully. In the present study, the most popularly cultivated species of cooking and desert type banana in Ethiopia selected. The objective of this ...
Show More